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ABSTRACT

"The solution of the one-dimensional time-independent Schrodinger

equation in which the energy minus the potential varies as the n-th

power of the distance is obtained from proper linear combinations of

:..1
Bessel functions. of order (n + 2) . The linear combinations t,-whi-ch,cwe

call",)'generalized Airy functions" a...i-0(x)--.and 13\~(x) , reduce to the

usual Airy functions Ai(x) and Bi(x) when n = 1 and have the same

type of simple asymptotic behavior. Expressions for the generalized

Airy functions .which can be evaluated by the method of generalized

Gaussian quadrature are obtained.

* This work was supported by the National Aeronautics and Space

Administration Grant NGL 50-002-001.



1

GENERALIZED AIRY FUNCTIONS FOR USE IN ONE-DIMENSION~ QUANtUM MECHANICAL

PROBLEMS

For one-dimensional quantum mechanical systems, the usual WK.B

approximation gives simple expressions for the wave function in both

the classical and the non-classical regions of configuration space.

Connection formulas relate the two expressions on either side of a

classical turning point where the WKB wavefunctions.become infinite.

1The standard textbook example of the connection formulas in the semi-

classical approach assumes that the potential is a linear function of

x in the neighborhood of the turning point. The exact solution in

this case is given by the Airy functions Ai(x) and Bi(x) which are

simply related to Bessel functions of order 1/3. An analogous treatment

"for the Schrodinger equation

(1)

where c
2
x

n =Q2(x) = 2i [E - Vex)] has a zero of order n is easily
11

obtained but does not seem to be readily available. In this note explicit

expressions for the solution of Eq. (1) for which Q2 has a zero of

arbitrary order are obtained. We call these solutions "generalized

Airy functions" aiv (x) and

give the Airy functions for

13iV(x) since they are standardized to

2
n = 1. Gordon has given a method for

calculating the Airy functions by means of generalized Gaussian quadra-

ture. This method is extended here for the calculation of the generalized

Airy functions.
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In the following development it is shown that the generalized Airy

functions are linear combinations of solutions w + (x) to Eq. (1) ,v-

aivex)
+

+ wv-(x)]= ~ [wv (x)

(2)

13iv(x) [wv-(x)
+

= k2 - w (x)]
'J

where the k's are constants and the are proportional to real

solutions (valid in the classical region) and (valid

in the non-classical region). The constants of proportionality are

determined so that the

turning point, x = 0

+w
v
- remain well-behaved in passing through the

For convenience we take the non-classical region to be to the left

of the origin. The solution of Eq. (1) with c real was found by

Lomme13 to be:

(3)

x -1where S = I Q(x) dx, 'V = n + 2 , A+ are constants, and the J+'V0

are Bessel functions of real argument. In the non-classical region

this solution takes the real form

(4)

where lsi
o

Ix IQ(x)ldx ,B+ are constants, and I+'V(z) exp(-TI'Vi/2) J+'V(iz)

are Bessel functions of imaginary argument.
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Watson4 gives the following limiting forms of these Bessel

functions:

x ~ 0

+

x ~ 00

C~ I~ I)±V
I±v C1s!) = rCl + V) + ...

(5)

x ~ - 00

(6)

'1
I+)lsl) = (zrrlsl)-1/2 {elsl[I+OCm)]' + e[-lsl-(-.z± v)rri] + ..• }.

(7)

5A derivation of the connection formulas, originally due to Jeffreys,

uses the limiting forms near the turning point. +Expanding the w -(x)
V

of Eqs. (3) and (4) in powers of x, we obtain as leading terms

w +(x > 0) = A (2v)1/2 (cv)v x/rCI + v) + ...
V +

w -Cx > 0) = A (zv)1/2 Ccv)-v/rC1 - V) + ...
V

(8)

w -Cx < 0) = B Czv)1/2 CcV)v/r(1 - v) + ...
V
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A connection formula arises from the condition that these different

solutions join smoothly at the turning point. This condition is satis-

. +
f~ed for Wv (x > 0) and +w (x < 0)

V

It is convenient to take the magnitudesand w -(x < 0) if A = B
V

of these constants as unity. Now the explicit expressions for the +w
V

in terms of the Bessel functions are

+ > 0)
+ (s/Q)l/2 J (s)w (x u (x) I::

V V +V

(3')
w -(x> 0) = U

v
- (x) = (s/Q)l/2 J (s) "

V . -v

+
0)

+
= - (jsl/IQI)l/2 l+

v
(lsl)w (x < = -v (x)

V V
(4' )

w (x < 0) = v -(x) = (lsl/IQI)1/2 I (lsi)v V -V

The asymptotic behavior of the

and (7):

+w - functions follows from Eqs. (6)
V

(9)

W
v

= (-~1TQ)-1/2 cos(s + V1T/2 - rr/4) + ...

W
V

+ "" _(21TIQI)-1/2 { e lsl [1 + O(m)] + { e[-I~I-(~ + v)rri] + ••. }

• W
v

I:: (2rrIQ/)-1/2 { e lsl [1 + O(m)] + { e[-I~I-(~ - v)rri] + ••. } 0

(10)



We now wish to find linear combinations of these functions which

are suitable for describing wave functions. If there is no turning

point to the left of the origin, one combination must yield a decaying

exponential in the non-classical region. The linear combination

5

+w +w
\) \)

has the asymptotic behavior

x + - 00

w + + w = 2 sin(vrr) (2nIQ/)-1/2
\) \)

x+ oo

e-I t;;1 + ... (11)

+ ,w +w
\) \)

1 -1/2= 2 cos(vrr/2) (~Q) cos(t;; - n/4) + (12)

As usually stated* the connection formula in this case would have the

form:

sin(vrr/2) IQI- l / 2
(13)

The one-sided nature of this connection formula is meant to imply

the following: if the expression on the left is a good asymptotic

approximation to the true solution to the left of the turning point,

then the expression on the right is a good asymptotic approximation to

the right of the turning point. However, it is not possible to apply

the converse, that is* to reverse the arrow. The reason for this bias

in direction is not clear from Jeffreys' derivation (Jeffreys used a

double-head arrow) * but is explained in Langer's article6 where the

case for \) = 1/3 is treated. It is sufficient to ,state here that
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when the arrow is reversed in Eq. (13) the increasing exponential term

in w ± is introduced if the phase of the wave function is only
v

slightly different from rr/4. The connection formula problem is

interesting from a mathematical viewpoint but is unimportant in practice.,

In obvious analogy to the usual Airy functions we identify the

and+
- w

V

CLi as the
V

combination

linear combination w + + w - and the 1Bi"
V V v

-3/2Choosing kl = 2 csc(vrr)

as the linear

k = 2-1/2
2

as the constants in Eq. (2), the following expressions are obtained:

Gli (x) = l csc(vrr) v l / 2 x l / 2[J (~) + J (~)]
V 2 V-V

13i (-x) = vl / 2
x

l / 2[I (~) + I (~)]
V -V V

where, as defined before, ~ = 2cv x

1Bi
V

(x) = vl / 2 xl/2[J_v(~) - Jv(~)]

1
2v

(14) .

The multiplicative factors

have been picked to make the Wronskian W of the generalized Airy

functions the same as for the usual Airy functions

WfLli (x) , 13 i (x)} == (1i (x) dd 13i (x) - 13. i ex) dd O-i (x)
V V \) x V \) x \)

(15)

-1= rr

The generalized Airy functions, of course, obey the same type of rela-

tions that the Ai and Bi functions do. In particular, the identity

'6i (x) = e(rri/2-TIVi) OJ. [xe(2TIVi)] + (TIVi-rri/2)Q.,. [ (-2TIVi)]
V \) e ~\) xe

(16)
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is operative. The series expansions for these generalized functions

are readily obtained from the series representations of the Bessel

functions.

2Gordon has recently calculated the Ai and Bi functions to

great accuracy using the method of generalized Gaussian quadrature.

In order to apply this method to the calculation of the and

1StV functions, it is necessary to express them in terms of the Bessel

function of imaginary argument

U ° h °d ° 7s1ng t e 1 ent1ty

K,,(z) ° 2
1

TIcsc(vrr)[I (z) - I (z)].
v -v v

K (u)
V

= TI-1 cos(VTI) 1/2
u

-x
e Kv(x)

x l / 2 (x+u)
dx (17)

and Eq. (16), the pair of relations are obtained:

-1/2 1/2-l/4v
c x

00

e-~ f
o

p(u)
H(u/ ~)

du

where

-1/2
c

1/2-1/4v
x e+S foo p(u) du

o l-(u/s)

(18)

p(u) = (2/TI)l/2 u-1 / 2 -u
e Kv(u) (19)

*and c in the constant in Eq. (1).

* Unfortunately, Gordon's Eq. (A9) has a typographical error. It

should read

() 2-1/2 -3/2 -1/2P x = TI X

Using this equation, his Eq. (A10) is obtained. Also his Eqs. (A14)

and (Al5) are wrong. However, Eqs. (A16) and (A17) are,,correct.



In terms of Kv ' the generalized Airy functions for positive x

are:

8

GLi (x)v
= i/2 TI- l csc(vrr/2) vl / 2 xl / 2 [K (i~) - K (-i~)]

v v

(20)

The corresponding integral expressions are given by

(li,,(x) = ! c-l / 2TI-3/ 2 csc(vTI/2)cos(vTI) xl/2-1/4v f~
v 2 0

cos(~-TI/4) + (u/~)sin(~-TI/4)

1 + (u/~)2
p(u) du

~

= 2c-1/ 2 TI-3/ 2 sin(vTI/2)cos(vrr) x1/2-l/4v f
o

(u/~)cos(~-TI/4) - sin(~-TI/4)

1 + (u/~)2

where p(u) is the same as Eq. (19).

p(u) du

(21)

The moments, ~k' of the positive function p(u) can be found

. h 'd . 8us~ng t e ~ ent~ty

00

f j-1 -x -1/2 -j r(j+v)r(j-v)
o x e Kv(x)dx = TI 2 r(j+1/2) (22)



Thus,

00

= f o
k

x p(x)dx = f(k + 1/2 + v) f(k + 2/2 - v)

2
k

k: (23)

9

Using the ~k' the integral expressions for the generalized Airy

functions can be approximated as sums of n points and n weights

determined by a generalized Gaussian quadrature algorithm given else-

9where.

ACKNOWLEDGEMENTS .

-
The author wishes to thank Professor J. O. Hirschfe1der for en-

couraging this development and for suggesting several improvements to
,

the manuscript. A helpful discussion with Dr. Richard Askey is also

gratefully acknowledged.



10

REFERENCES

1. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, Third Ed.,

1968), pp. 268-275.

2. R. G. Gordon, J. Chern. Phys. 51, 14 (1969).

3. G. N. Watson, Theory of Bessel Functions (Cambridge University

Press, Cambridge, Second Ed., 1952), p. 97.

4. Reference 3, pp. 40, 77, 199, 203.

5. H. Jeffreys, Proc. Lond. Math. Soc. (2) 23, 428 (1923).

6. R. E. Langer, Bull. Am. Math. Soc. 40, 545 (1934).

7. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and

Products (Academic Press, Inc., New York, 1965) p. 715, formula 6.627.

8. Reference 7, p. 712, formula 6.621.3.

9. R. G. Gordon, J. Math. Phys. 2, 655 (1968); see also p. 1087 for error

bounds of the quadrature formulas.


